Publications

原著論文

  • Nakayama K.*, Shachar S., Finn EH., Sato H., Hirakawa A. and Misteli T.* Large-scale mapping of positional changes of hypoxia-responsive genes upon activation. Mol. Biol. Cell, 33:ar72, (2022)
    doi: 10.1091/mbc.E21-11-0593.
  • Amioka A., Kadoya T., Sueoka S., Kobayashi Y., Sasada S., Emi A., Masumoto N., Ito M., Nakayama K., Okada M. Effect of Wnt5a on drug resistance in estrogen receptor-positive breast cancer. Breast Cancer, 28,1062-1071, (2021) doi: 10.1007/s12282-021-01241-0
  • Eguchi K., and Nakayama K.* Prolonged hypoxia decreases nuclear pyruvate dehydrogenase complex and regulates the gene expression. Biochem Biophys Res Commun., 520, 128-135, (2019)
  • Yonashiro R., Eguchi K., Wake M., Takeda N., and Nakayama K.* Pyruvate dehydrogenase PDH-E1β is downregulated under prolonged hypoxic conditions and controls tumor progression by altering the metabolic status of cancer cells. Cancer Res., 78, 1592-1603, (2018)
  • Gudla PR., Nakayama K., Pegoraro G., Misteli T. SpotLearn: Convolutional Neural Network for Detection of Fluorescence In Situ Hybridization (FISH) Signals in High-Throughput Imaging Approaches. Cold Spring Harb Symp Quant Biol., 82, 57-70, (2017)
  • Kikuchi D., Tanimoto K., and Nakayama K.* CREB is activated by ER stress and modulates the unfolded protein response by regulating the expression of IRE1α and PERK. Biochem. Biophys. Res. Commun., 469, 243-250, (2016)
  • Katsuta E, Tanaka S, Mogushi K, Shimada S, Akiyama Y, Aihara A, Matsumura S, Mitsunori Y, Ban D, Ochiai T, Kudo A, Fukamachi H, Tanaka H, Nakayama K., Arii S, Tanabe M. CD73 as a therapeutic target for pancreatic neuroendocrine tumor stem cells. Int. J. Oncol., 48, 657-669, (2016)
  • Kikuchi D., Minamishima YA., and Nakayama K.* Prolyl-hydroxylase PHD3 interacts with pyruvate dehydrogenase (PDH)-E1beta and regulates the cellular PDH activity. Biochem. Biophys. Res. Commun. 451, 288-294, (2014)
  • Nakayama K.* CREB and NF-kB are activated during prolonged hypoxia and cooperatively regulate the induction of matrix metalloproteinase MMP1. J. Biol. Chem. 288, 22584-22595, (2013)
  • Arima N., Uchida Y., Yu R., Nakayama K., Nishina H. Acetylcholine receptors regulate gene expression that is essential for primitive streak formation in murine embryoid bodies. Biochem. Biophys. Res. Commun. 435, 447-453, (2013)
  • Muramatsu S., Tanaka S., Mogushi K., Adikrisna R., Aihara A., Ban D., Ochiai T., Irie T., Kudo A., Nakamura N., Nakayama K., Tanaka H., Yamaoka S., Arii S. Visualization of stem cell features in human hepatocellular carcinoma enlightened in vivo significance of tumor-host interaction and clinical implication. Hepatology 58, 218-228, (2013)
  • Sato M., Sakota M., and Nakayama K.* Human PRP19 interacts with prolyl-hydroxylase PHD3 and inhibits cell death in hypoxia. Exp. Cell Res. 318, 2871-2882, (2010)
  • Qi J., Nakayama K., Cardiff R.D., Borowsky A.D., Kaul K., Williams R., Krajewski S., Mercola D., Carpenter P.M., Bowtell D., and Ronai A.Z. * Siah2-depenent concerted activity of HIF&FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors. Cancer Cell 18, 23-38, (2010).
  • Qi J.#, Nakayama K. # (# equal contribution) , Gaitonde S., Goydos J.S., Krajewski S., Eroshkin A., Bar-Sagi D, Bowtell D.D. and Ronai Z. The ubiquitin ligase Siah2 regulates tumorigenesis and metastasis by HIF-dependent and -independent pathways. Proc. Natl. Acad. Sci. U. S. A. 105, 16713-16718, (2008).
  • Nakayama K., Gazdoiu S., Abraham R., Pan Z.Q. and Ronai Z. Hypoxia-induced assembly of prolyl-hydroxylase, PHD3 into complexes: implications for its activity and susceptibility for degradation by the E3 ligase Siah2. Biochem. J. 401, 217-226, (2007).
  • Khurana A., Nakayama K., Davis R., Williams S., Mustellin T., Ronai Z. Regulation of the RING finger E3 ligase Siah2 by p38 MAPK. J. Biol.Chem. 281, 35316-35326, (2006).
  • Nakayama K., Frew I.J., Hagensen M., Skals M., Habelhah H., Bhoumik A., Kadoya T., Erdjument-Bromage H., Tempst P., Frappell P.B., Bowtell D.D., Ronai Z. Siah2 regulates stability of prolyl-hydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Cell 117, 941-952, (2004).
  • Didier C., Broday L., Bhoumik A., Israeli S., Takahashi S., Nakayama K., Thomas S.M., Turner C.E., Henderson S., Sabe H., Ronai Z. RNF5, a RING finger protein that regulates cell motility by targeting paxillin ubiquitination and altered localization. Mol. Cell Biol. 15, 5331-5345, (2003).
  • Nakayama K., Kim K. W., and Miyajima A. A novel nuclear zinc finger protein EZI enhances nuclear retention and transactivation of STAT3. EMBO J.21, 6174-6184, (2002).
  • Nakayama K., Hara T., Hibi M., Hirano T.and Miyajima A. The Novel Oncostatin M-Inducible Gene OIG37 Forms a Gene Family with MyD118 and GADD45 and Negatively Regulates Cell Growth. J. Biol.Chem. 274, 24766-24772, (1999).

?


欧文総説

  • Nakayama K.* and Kataoka N.* Regulation of Gene Expression under Hypoxic Conditions. Int. J. Mol. Sci. 20, E3278(1-15), (2019).
  • Nakayama K., Nangaku M. Hypoxia-inducible factor and signal transducer and activators of transcription 3: two central regulators meet to regulate kidney pathophysiology. Clin. Exp. Pharmacol. Physiol. 40, 251-252, (2013).
  • Nakayama K. Growth and progression of melanoma and non-melanoma skin cancers regulated by ubiquitination. Pigment Cell Melanoma Res. 23, 338-351, (2010).
  • Nakayama K. Cellular signal transduction of the hypoxia response. J. Biochem. 146, 757-765, (2009).
  • Nakayama K., Qi J., Ronai Z. The ubiquitin ligase Siah2 and the hypoxia response. Mol. Cancer Res. 7, 443-451, (2009).
  • Nakayama K., Ronai Z. The role of ubiquitin proteasome pathway in the regulation of the cellular hypoxia. Protein degradation and the ubiquitin proteasome system Vol. 3 (Wiley-VCH) (2006).
  • Nakayama K., Ronai Z. Siah: new players in the cellular response to hypoxia. Cell Cycle 11, 1345-1347, (2004).
  • Miyajima A., Hara T., Nakayama K. Hematopoietic Signal Transduction. Hematopoiesis (Oxford University Press), (2001).

?


和文総説

  • 中山 恒 (2016) 低酸素センサー 炎症と免疫 Vol.24(4) 271-276,(先端医学社)
  • 中山 恒, 合田 亘人 (2012) 多彩な生命現象に働く低酸素応答システム 実験医学5月号 Vol.30(8) 1246-1251,(羊土社)
  • 中山 恒 (2012) PHDによって制御される低酸素応答シグナル HIF経路とHIF非依存的経路の役割 実験医学5月号 Vol.30(8) 1283-1288,(羊土社)
  • 中山 恒 (2011) がんにおける低酸素応答シグナル伝達 実験医学増刊号 がん幹細胞 Vol.29(20) 141-147,(羊土社)
  • 中山 恒 (2011) 低酸素応答におけるエネルギー代謝調節The Lung Perspectives Vol.19 63-67,(メディカルレビュー社)
  • 中山 恒, Ze’ev Ronai(2006)低酸素応答におけるユビキチン系の働き ユビキチン-プロテアソーム系とオートファジー 蛋白質?核酸?酵素  Vol.51(10),(共立出版)
  • 中山 恒, Ze’ev Ronai(2004)低酸素応答におけるユビキチンリガーゼSiah2によるプロリン水酸化酵素PHDの制御 実験医学 Vol.22(16),(羊土社)